Files
Asynchronous-FIFO-AXI-Hands…/libs/GrayCounter.vhd
MaxP ffbf5c4984 Add Gray counter implementation and testbench
Introduces a synchronous Gray counter with configurable width, reset, enable, and look-ahead functionality. Implements binary-to-Gray and Gray-to-binary conversion functions. Includes a testbench for simulation and validation of the counter's behavior.
2025-04-16 17:30:22 +00:00

120 lines
5.0 KiB
VHDL

----------------------------------------------------------------------------------
--@ - Name: **Gray Counter** <br>
--@ - Version: 0.0.2 <br>
--@ - Author: __Maximilian Passarello ([Blog](mpassarello.de))__ <br>
--@ - License: [MIT](LICENSE) <br>
--@ A synchronous Gray counter with reset and enable
--@ History:
-- - 0.0.2 (2024-03-27) Refactored code to use conventions
-- - 0.0.1 (2009-04-02) Initial version
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity GrayCounter is
generic (
--@ Width of the counter
G_Width : integer := 4;
--@ Initial value of the counter
G_InitialValue : integer := 0;
--@ Reset value of the counter
G_ResetValue : integer := 0;
--@ Counting direction: "UP" or "DOWN"
G_CountingDirection : string := "UP";
--@ Look ahead value
G_LookAhead : integer := 0
);
port (
--@ Clock input; rising edge
I_CLK : in std_logic := '0';
--@ Clock enable; active high
I_CE : in std_logic := '1';
--@ Reset input; active high; synchronous
I_RST : in std_logic := '0';
--@ Count enable; active high
I_CountEnable : in std_logic := '0';
--@ Gray counter value
O_Value : out std_logic_vector(G_Width - 1 downto 0) := (others => '-');
--@ Look ahead value
O_LAValue : out std_logic_vector(G_Width - 1 downto 0) := (others => '-')
);
end GrayCounter;
architecture Behavioral of GrayCounter is
-- Functions
--@ Convert Binary to Gray code
function BinaryToGray(I_BinaryValue : std_logic_vector)
return std_logic_vector is
constant K_Width : integer := I_BinaryValue'Length;
variable V_GrayValue : std_logic_vector(K_Width - 1 downto 0);
begin
V_GrayValue(K_Width - 1) := I_BinaryValue(K_Width - 1);
for i in 1 to K_Width - 1 loop
V_GrayValue((K_Width - 1) - i) := I_BinaryValue((K_Width - 1) - i) xor I_BinaryValue(((K_Width - 1) - i) + 1);
end loop;
return V_GrayValue(K_Width - 1 downto 0);
end function BinaryToGray;
--@ Convert Gray code to binary
function GrayToBinary(I_GrayValue : std_logic_vector)
return std_logic_vector is
constant K_Width : integer := I_GrayValue'Length;
variable V_BinaryValue : std_logic_vector(K_Width - 1 downto 0);
begin
V_BinaryValue(K_Width - 1) := I_GrayValue(K_Width - 1);
for i in 1 to K_Width - 1 loop
V_BinaryValue((K_Width - 1) - i) := V_BinaryValue(K_Width - i) xor I_GrayValue((K_Width - 1) - i);
end loop;
return V_BinaryValue(K_Width - 1 downto 0);
end function GrayToBinary;
function CountingStep(I_BinaryValue : std_logic_vector; I_Step : integer := 1)
return std_logic_vector is
begin
if G_CountingDirection = "DOWN" then
return std_logic_vector(unsigned(I_BinaryValue) - I_Step);
else
return std_logic_vector(unsigned(I_BinaryValue) + I_Step);
end if;
end function CountingStep;
-- Constants
constant K_InitialValue : std_logic_vector(G_Width - 1 downto 0) := std_logic_vector(to_unsigned(G_InitialValue, G_Width));
constant K_InitialLookAhead : std_logic_vector(G_Width - 1 downto 0) := std_logic_vector(to_unsigned(G_InitialValue + G_LookAhead, G_Width));
constant K_ResetValue : std_logic_vector(G_Width - 1 downto 0) := std_logic_vector(to_unsigned(G_ResetValue, G_Width));
constant K_ResetLookAhead : std_logic_vector(G_Width - 1 downto 0) := std_logic_vector(to_unsigned(G_ResetValue + G_LookAhead, G_Width));
signal R_CounterValue : std_logic_vector(G_Width - 1 downto 0) := K_InitialValue;
signal R_GrayValue : std_logic_vector(G_Width - 1 downto 0) := BinaryToGray(K_InitialValue);
signal R_LookAheadValue : std_logic_vector(G_Width - 1 downto 0) := BinaryToGray(K_InitialLookAhead);
begin
O_Value <= R_GrayValue;
O_LAValue <= R_LookAheadValue;
Counter : process (I_CLK)
variable V_Counter : std_logic_vector(G_Width - 1 downto 0);
variable V_LookAhead : std_logic_vector(G_Width - 1 downto 0);
begin
if rising_edge(I_CLK) then
if I_RST = '1' then
V_Counter := (others => '0');
R_GrayValue <= BinaryToGray(K_ResetValue);
R_LookAheadValue <= BinaryToGray(K_ResetLookAhead);
R_CounterValue <= K_ResetValue;
elsif I_CE = '1' then
if I_CountEnable = '1' then
V_Counter := CountingStep(R_CounterValue);
R_CounterValue <= V_Counter;
R_GrayValue <= BinaryToGray(V_Counter);
V_LookAhead := CountingStep(V_Counter, G_LookAhead);
R_LookAheadValue <= BinaryToGray(V_LookAhead);
end if;
end if;
end if;
end process;
end Behavioral;