Moves desktop notification functionality to a separate module for better code reuse and maintainability. Updates the main application to use the new utility.
207 lines
7.6 KiB
Python
Executable File
207 lines
7.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import sys
|
|
import subprocess
|
|
import os
|
|
import threading
|
|
import socket
|
|
import json
|
|
import requests
|
|
from PyQt5.QtWidgets import QApplication, QSystemTrayIcon, QMenu, QAction
|
|
from PyQt5.QtGui import QIcon
|
|
from PyQt5.QtCore import QThread, pyqtSignal
|
|
from configuration import read_configurations
|
|
from notify import notify
|
|
|
|
CONFIGURATION = read_configurations()
|
|
CURRENT_PRESET = CONFIGURATION["presets"][0] # Default to first preset
|
|
|
|
class WhisperWorker(QThread):
|
|
"""
|
|
A PyQt QThread subclass that handles the transcription of audio files using Whisper
|
|
and processes the result with Ollama. The final output is copied to the clipboard
|
|
and a signal is emitted upon completion.
|
|
Signals:
|
|
finished (pyqtSignal): Emitted with the formatted transcription result as a string
|
|
when the process is successfully completed.
|
|
Methods:
|
|
run():
|
|
Executes the transcription process using Whisper, sends the result to Ollama
|
|
for further processing, and copies the final output to the clipboard. Handles
|
|
errors at various stages and provides notifications for failures.
|
|
"""
|
|
finished = pyqtSignal(str)
|
|
|
|
def run(self):
|
|
try:
|
|
# Whisper ausführen
|
|
whisper_cmd = [
|
|
CONFIGURATION["whisper_path"],
|
|
"-m", CURRENT_PRESET["whisper_model"],
|
|
"-f", CONFIGURATION["audio_file"],
|
|
"-l", CURRENT_PRESET["language"],
|
|
"-otxt",
|
|
"-of", CONFIGURATION["output_file"].replace(".txt", "")
|
|
]
|
|
try:
|
|
subprocess.run(whisper_cmd, check=True)
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Whisper Fehler: {e}")
|
|
notify("Fehler", "Ein Fehler mit 'Whisper' ist aufgetreten!")
|
|
return
|
|
|
|
try:
|
|
with open(CONFIGURATION["output_file"], "r") as f:
|
|
raw_result = f.read().strip().replace("\n", " ")
|
|
except Exception as e:
|
|
print(f"Datei Fehler: {e}")
|
|
notify("Fehler", "Ein Fehler beim Lesen der Whisper-Ausgabe ist aufgetreten!")
|
|
return
|
|
|
|
print("Whisper Transkript erhalten.")
|
|
|
|
# --- An Ollama schicken ---
|
|
payload = {
|
|
"model": CURRENT_PRESET["ollama_model"],
|
|
"prompt": CURRENT_PRESET["ollama_prompt"] + raw_result,
|
|
"stream": False
|
|
}
|
|
ollama_endpoint = f"{CONFIGURATION['ollama_url']}:{CONFIGURATION['ollama_port']}/api/generate"
|
|
response = requests.post(ollama_endpoint, json=payload)
|
|
|
|
try:
|
|
response.raise_for_status()
|
|
except requests.exceptions.HTTPError as e:
|
|
print(f"HTTP Fehler: {e}")
|
|
notify("Fehler", "Ein Fehler bei der Kommunikation mit 'Ollama' ist aufgetreten!")
|
|
return
|
|
|
|
formatted_result = response.json().get("response", "").strip()
|
|
formatted_result = "\n".join(line.strip() for line in formatted_result.splitlines())
|
|
print("Ollama Antwort erhalten.")
|
|
|
|
# Ergebnis ins Clipboard kopieren
|
|
try:
|
|
subprocess.run(["wl-copy"], input=formatted_result.encode(), check=True)
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Clipboard Fehler: {e}")
|
|
notify("Fehler", "Ein Fehler beim Kopieren des Ergebnisses ist aufgetreten!")
|
|
return
|
|
|
|
notify("Spracherkennung", "Transkription abgeschlossen!")
|
|
self.finished.emit(formatted_result)
|
|
|
|
except Exception as e:
|
|
print(f"Fehler: {e}")
|
|
notify("Fehler", "Ein Fehler ist aufgetreten!")
|
|
return
|
|
|
|
# === Socket Listener Thread ===
|
|
class SocketListener(threading.Thread):
|
|
def __init__(self, tray_app):
|
|
super().__init__(daemon=True)
|
|
self.tray_app = tray_app
|
|
if os.path.exists(CONFIGURATION["socket_path"]):
|
|
os.remove(CONFIGURATION["socket_path"])
|
|
self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
|
|
self.sock.bind(CONFIGURATION["socket_path"])
|
|
os.chmod(CONFIGURATION["socket_path"], 0o666)
|
|
self.sock.listen(1)
|
|
|
|
def run(self):
|
|
while True:
|
|
conn, _ = self.sock.accept()
|
|
with conn:
|
|
data = conn.recv(1024).decode().strip()
|
|
if data == "toggle":
|
|
self.tray_app.toggle_recording()
|
|
elif data == "start":
|
|
self.tray_app.start_recording()
|
|
elif data == "stop":
|
|
self.tray_app.stop_recording_if_possible()
|
|
|
|
# === Tray Application ===
|
|
class TrayApp:
|
|
def __init__(self):
|
|
self.app = QApplication(sys.argv)
|
|
self.tray = QSystemTrayIcon(QIcon.fromTheme("audio-input-microphone"))
|
|
self.menu = QMenu()
|
|
|
|
self.app.aboutToQuit.connect(self.cleanup)
|
|
|
|
# Preset Menü
|
|
self.preset_actions = []
|
|
self.preset_group = QMenu("Presets")
|
|
for i, preset in enumerate(CONFIGURATION["presets"]):
|
|
action = QAction(preset["name"], self.menu)
|
|
action.setCheckable(True)
|
|
if i == 0:
|
|
action.setChecked(True)
|
|
action.triggered.connect(lambda checked, index=i: self.set_preset(index))
|
|
self.preset_group.addAction(action)
|
|
self.preset_actions.append(action)
|
|
self.menu.addMenu(self.preset_group)
|
|
|
|
# Quit
|
|
self.quit_action = QAction("Beenden")
|
|
self.quit_action.triggered.connect(self.app.quit)
|
|
self.menu.addAction(self.quit_action)
|
|
|
|
self.tray.setContextMenu(self.menu)
|
|
self.tray.setToolTip("Voice to Text")
|
|
self.tray.show()
|
|
|
|
self.recording_process = None
|
|
|
|
self.socket_listener = SocketListener(self)
|
|
self.socket_listener.start()
|
|
|
|
def set_preset(self, index):
|
|
global CURRENT_PRESET
|
|
print(f"Preset gewechselt: {CONFIGURATION['presets'][index]['name']}")
|
|
CURRENT_PRESET = CONFIGURATION["presets"][index]
|
|
# Nur einer darf gecheckt sein
|
|
for i, action in enumerate(self.preset_actions):
|
|
action.setChecked(i == index)
|
|
|
|
def start_recording(self):
|
|
if self.recording_process is None:
|
|
print("Starte Aufnahme...")
|
|
self.recording_process = subprocess.Popen([
|
|
"ffmpeg", "-f", "pulse", "-i", "default", "-ar", "16000",
|
|
"-ac", "1", CONFIGURATION["audio_file"], "-y", "-loglevel", "quiet"
|
|
])
|
|
notify("Aufnahme", "Aufnahme gestartet!")
|
|
|
|
def stop_recording_if_possible(self):
|
|
if self.recording_process:
|
|
print("Stoppe Aufnahme...")
|
|
self.recording_process.terminate()
|
|
self.recording_process.wait()
|
|
self.recording_process = None
|
|
notify("Aufnahme", "Aufnahme beendet, verarbeite...")
|
|
self.start_whisper_worker()
|
|
|
|
def toggle_recording(self):
|
|
if self.recording_process:
|
|
self.stop_recording_if_possible()
|
|
else:
|
|
self.start_recording()
|
|
|
|
def start_whisper_worker(self):
|
|
self.worker = WhisperWorker()
|
|
self.worker.finished.connect(self.show_result)
|
|
self.worker.start()
|
|
|
|
def show_result(self, text):
|
|
print(f"Fertig:\n{text}")
|
|
|
|
def cleanup(self):
|
|
if os.path.exists(CONFIGURATION["socket_path"]):
|
|
os.remove(CONFIGURATION["socket_path"])
|
|
print("Socket sauber entfernt.")
|
|
|
|
def run(self):
|
|
sys.exit(self.app.exec_())
|
|
|
|
if __name__ == "__main__":
|
|
TrayApp().run() |